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Hexitol nucleic acids are oligonucleotides built up from natural

nucleobases and a phosphorylated 1,5-anhydrohexitol backbone. The

anhydrohexitol oligonucleotide h(GTGTACAC) was synthesized

using phosphoramidite chemistry and standard protecting groups.

Crystals of h(GTGTACAC) were obtained at either 279 or 289 K by

the hanging-drop vapour-diffusion technique using a 24-matrix screen

for nucleic acid fragments. The crystals diffract beyond 2.0 AÊ

resolution and belong to the hexagonal space group P6222 (or

P6422) with unit-cell parameters a = 36.42 and c = 63.33 AÊ .
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1. Introduction

Antisense oligonucleotides can be considered

as a new class of potential therapeutic agents.

However, modi®cations of the classical DNA

backbone are necessary in order to overcome

the problems of low stability and cellular

uptake. One such recent modi®cation (Van

Aerschot et al., 1995) is the use of 1,5-anhy-

drohexitol building blocks (Fig. 1) instead of

the normal �-d-20-deoxyribose. The insertion

of an extra methylene group between C10 and

O40 has an enormous in¯uence on the stability

of complexes between these modi®ed hexitol

nucleic acids (HNA) and DNA or RNA. HNA

duplexes are even more stable: the melting

temperature of (hT)13.(hA)13 (349 K) is

considerably higher than that of its natural

analogue (307 K). This hexitol modi®cation is

one of the strongest hybridizing antisense

compounds presently known.

The crystal structures of the hexitol guanine

(hG), cytosine (hC), thymine (hT), inosine (hI)

and iodouracil [h(IdU)] building blocks have

shown the chair conformation for the hexitol

ring, with the base oriented in the axial posi-

tion and anti conformation (Verheggen et al.,

1995; Declercq et al., 1996). As a consequence,

the incorporation of 1,5-anhydrohexitol sugars

will greatly in¯uence the three-dimensional

structure of the HNA duplex. From circular

dichroism measurements one can conclude

that the HNA double helix formed is of a new

type (Hendrix et al., 1997). A complete struc-

ture determination will elucidate the geometry

and hydration of these new HNA duplexes and

may explain their extra stability.

2. Methods and results

2.1. Synthesis of h(GTGTACAC)

The modi®ed oligonucleotide was assembled

on an LCAA-CPG support functionalized with

the 1,5-anhydrohexitol deoxycytidine analogue

(hC) (Verheggen et al., 1993; Van Aerschot et

al., 1995). Synthesis was performed on a

10 mmol scale on an ABI-392 synthesizer using

the monomethoxytritylated nucleoside phos-

phoramidite analogues at 0.12 M concentra-

tion. The standard protocol was slightly

adapted with extension of the coupling time to

10 min and a 5 min detritylation procedure.

Standard deprotection (33% aqueous NH3,

16 h at 328 K) was followed by anion-exchange

puri®cation at pH 12 on a Mono-Q column HR

10/10 (Pharmacia) with a NaCl gradient (®ve

runs). Gel ®ltration on a Biogel P2 column (280

� 25 mm, exclusion limit 1800 Da) afforded

the puri®ed material (yield 240 OD) as its

sodium salt.

2.2. Crystallization

Crystallization conditions were screened

using a 24-matrix screen for nucleic acid frag-

ments (Berger et al., 1996). Crystals were

grown at 289 K by the hanging-drop vapour-

diffusion technique using Linbro multiwell

tissue-culture plates. Well shaped crystals

appeared in the droplets after 1 d using the

conditions 10%(v/v) MPD, 12 mM spermine

chloride, 80 mM Na+ or K+, 20 mM Ba2+ and

40 mM cacodylate buffered at either pH 6.0 or

7.0. Two distinctive crystal forms were

observed: long needles with average dimen-

sions 0.05 � 0.05 � 0.3 mm and, under the K+-

containing conditions, diamond-like crystals

with average dimensions 0.25 � 0.25 �
Figure 1
1,5-Anhydrohexitol building block.



280 Declercq et al. � h(GTGTACAC) Acta Cryst. (1999). D55, 279±280

crystallization papers

0.25 mm (Fig. 2). After some days, the

morphology of the crystals changed. The

needles showed splitting, while the edges of

the diamond-like crystals became rounded.

The quality of fresh crystals was checked

on a Xentronics area-detector system

equipped with a rotating-anode source and

showed the necessity of using synchrotron

radiation. Finally, crystals were grown near

the synchrotron site at both 279 and 289 K,

and the diamond-like crystals with dimen-

sions 0.2 � 0.2 � 0.2 mm proved to diffract

well beyond 2.0 AÊ .

3. Data collection and processing

Intensity data were collected at 100 K on an

MAR imaging-plate detector at beamline

5.2R of the synchrotron ELETTRA at

Trieste (� = 1.000 AÊ ) using cryo-cooling

techniques. Prior to ¯ash freezing of the

crystal, 2.5 ml of a 50%(v/v) aqueous MPD

solution was added to the crystal-containing

drop. For scaling purposes, two data sets

were collected at high (1.8 AÊ ) and low

(2.6 AÊ ) resolution over a 90� ' range and

increments of 1 and 2� with

crystal-to-detector distances of

140 and 220 mm, respectively.

The crystal did not show any sign

of decay during the data collec-

tion. The data sets were

processed with DENZO and

scaled with SCALEPACK

(Otwinowski & Minor, 1996).

The space group was determined

to be either P6222 or P6422 with

unit-cell dimensions a = 36.42,

c = 69.33 AÊ , which allows for one

strand in the asymmetric unit

and a volume per base pair of

1659 AÊ 3. Structure determina-

tion by molecular replacement is

currently being carried out using

a model built by molecular-

dynamics calculations (De

Winter et al., 1998).

An experimental low-resolu-

tion diffraction pattern is shown

in Fig. 3. Although the high-

resolution diffraction pattern

showed diffraction to 1.9 AÊ ,

careful analysis showed that the

data between 1.9 and 2.5 AÊ were

of much lower quality than the

rest; therefore, a cut-off was

chosen at 2.5 AÊ . Some data-

collection statistics are given in

Table 1.

The natural analogue of

h(GTGTACAC) and the poten-

tially Z-forming sequence

d(GTGTACAC) has been crys-

tallized as A-DNA in two

different crystal forms with

tetragonal (Jain & Sundar-

alingam, 1989) and hexagonal

(Jain et al., 1991; Thota et al.,

1993) unit cells. The hexagonal

crystal structure belongs to space group

P6122 with cell parameters a = 32.12 AÊ and

c = 78.51 AÊ , resulting in a smaller volume

per base pair (1467 AÊ 3) than found for the

hexitol octamer. However, the volume per

base pair has been found to be very variable

in A-DNA (�1300 to �1800 AÊ 3; Heine-

mann, 1991). So far, no well diffracting

needle-shaped crystals, which may poss-

ibly be the tetragonal variant of

h(GTGTACAC), have been obtained.

Further optimization of the crystallization

conditions is in progress.
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Figure 2
A typical diamond-like crystal of the hexitol-containing octamer
h(GTGTACAC) obtained by hanging-drop vapour diffusion. The
dimensions of the central crystal are 0.3 � 0.3 � 0.3 mm.

Figure 3
A 2� oscillation image of the h(GTGTACAC) crystal taken using
an MAR Research image plate on beamline 5.2R (Elettra, Trieste).
The resolution at the edge of the image is 2.5 AÊ .

Table 1
Data-collection statisitics.

Number of re¯ections used 10972
Number of unique re¯ections 1134
Resolution range (AÊ ) 14±2.5
Outermost resolution shell (AÊ ) 2.54±2.50
Overall I/�(I) > 3 (%) 93.2
Outermost shell I/�(I) > 3 (%) 86.4
Overall completeness 99.6
Overall Rmerge (%) 6.0
Outermost Rmerge (%) 12.2
Overall multiplicity 9.6


